Injury-induced functional plasticity in the peripheral gustatory system.

نویسندگان

  • Susan J Hendricks
  • Suzanne I Sollars
  • David L Hill
چکیده

Combining unilateral denervation of anterior tongue taste buds with a low-sodium diet in rats results in a rapid, dramatic, and selective attenuation of neurophysiological sodium taste responses from the intact side of the tongue. The transduction pathway responsible for the attenuated response is through the epithelial sodium channel (Hill and Phillips, 1994). Current experiments extend these findings by detailing the effects of experimentally induced injury on taste responses from anterior tongue taste receptors in sodium-restricted rats. Experiments focused on functional salt taste responses from the intact chorda tympani nerve in sodium-restricted rats in which a gustatory nerve was sectioned that innervates the anterior tongue (chorda tympani), the posterior tongue (glossopharyngeal), or palatal taste receptors (greater superficial petrosal) or in which a nongustatory nerve was sectioned that also has its target in the anterior tongue (trigeminal). An additional group was studied that received thermal injury to the anteroventral tongue. Substantial and selective suppression of sodium salt responses occurred in a graded manner generally related to the distance from the target field of the injury to anterior tongue taste buds. The order of effectiveness was: chorda tympani section > trigeminal section > thermal injury = glossopharyngeal section > greater superficial petrosal section. These results support the hypothesis that local, diffusible factors liberated from immune-derived cells as a result of neural and/or epithelial damage are involved in regulating the transduction pathway responsible for sodium salt sensation, and that these factors may become evident through dietary sodium restriction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural plasticity in the gustatory system.

Sensory systems adapt to changing environmental influences by coordinated alterations in structure and function. These alterations are referred to as plastic changes. The gustatory system displays numerous plastic changes even in receptor cells. This review focuses on the plasticity of gustatory structures through the first synaptic relay in the brain. Unlike other sensory systems, there is a r...

متن کامل

Orexin-A Improves Hepatic Injury Following Renal Ischemia Reperfusion in Rats

Introduction: Orexins are novel neuropeptides that are localized in neurons in the lateral hypothalamus. They are implicated in a wide variety of physiological functions. Orexin peptides and receptors are found in many peripheral organs such as kidneys. It has been demonstrated that exogenous orexin-A can induce protective effects against ischemia–reperfusion injury in many organs. The goal ...

متن کامل

Rapid changes in gustatory function induced by contralateral nerve injury and sodium depletion.

The combination of dietary sodium depletion and unilateral chorda tympani (CT) nerve section decreases sodium taste function in the intact CT nerve. However, functional changes have not been examined prior to day 4 postsectioning, even though degenerative and inflammatory responses are robust during that period. Rats received unilateral CT section and/or dietary sodium depletion, accomplished b...

متن کامل

P49: The Evaluation of Aqueous Extract of Glycyrrhiza Glabra on Nerve Recovery in the Rat after Sciatic Nerve Injury

Peripheral nerve injury requires a long recovery period, and recovery, once attained, usually is incomplete. Inflammatory procedures may inhibit functional recovery after nerve injury and produce cell death in both the central nervous system and the peripheral nervous system. Since the glycyrrhiza glabra extract has anti-inflammatory effects, it could reduce the severity of injury. The aim of t...

متن کامل

Neonatal infraorbital nerve crush-induced CNS synaptic plasticity and functional

19 Infraorbital nerve (ION) transection in neonatal rats leads to disruption of whisker20 specific neural patterns (barrelettes), conversion of functional synapses into silent 21 synapses and reactive gliosis in the brainstem trigeminal principal nucleus (PrV). Here 22 we tested the hypothesis that neonatal peripheral nerve crush injuries permit better 23 functional recovery of associated centr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 22 19  شماره 

صفحات  -

تاریخ انتشار 2002